Prediction of Interday Stock Prices Using Developmental and Linear Genetic Programming

نویسندگان

  • Garnett Carl Wilson
  • Wolfgang Banzhaf
چکیده

A developmental co-evolutionary genetic programming approach (PAM DGP) is compared to a standard linear genetic programming (LGP) implementation for trading of stocks across market sectors. Both implementations were found to be impressively robust to market fluctuations while reacting efficiently to opportunities for profit, where PAM DGP proved slightly more reactive to market changes than LGP. PAM DGP outperformed, or was competitive with, LGP for all stocks tested. Both implementations had very impressive accuracy in choosing both profitable buy trades and sells that prevented losses, where this occurred in the context of moderately active trading for all stocks. The algorithms also appropriately maintained maximal investment in order to profit from sustained market upswings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interday and Intraday Stock Trading Using Probabilistic Adaptive Mapping Developmental Genetic Programming and Linear Genetic Programming

A developmental co-evolutionary genetic programming approach (PAM DGP) is compared to a standard linear genetic programming (LGP) implementation for trading of stocks in the technology sector. Both interday and intraday data for these stocks were analyzed, where both implementations were found to be impressively robust to market fluctuations while reacting efficiently to opportunities for profi...

متن کامل

Grey prediction in linear programming problems

The purpose of this paper is describes the use of grey pridiction in linear programming problems. Some definitions and concepts of grey system theory are introduced and then, we introduced GM(1,1) and fractional order accumulation into grey model. Due to the fluctuation of prices and the lack of certainty data in the market, optimal production was calculated to optimize the profit from sales us...

متن کامل

Stock price analysis using machine learning method(Non-sensory-parametric backup regression algorithm in lin-ear and nonlinear mode)

The most common starting point for investors when buying a stock is to look at the trend of price changes. In recent years, different models have been used to predict stock prices by researchers, and since artificial intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have achieved successful re-sults in solving complex problems; in this regard, more exploita...

متن کامل

Investigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm

Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009